Print Name (clearly)

Useful equations:

$$\begin{split} E_{N} &= E_{A} + E_{R} \quad E_{total} = -\frac{A}{r} + \frac{B}{rn} \qquad A = \frac{z_{1}z_{2}e^{2}}{4\pi\varepsilon_{0}} \qquad E = \int Fdr \qquad F = \frac{dE}{dr} \\ Density &= \frac{mass}{volume}; \quad \rho = \frac{nA}{r}; \qquad APF = \frac{Vatoms}{V_{unit cell}}; \\ Volume of a sphere &= \frac{4}{3}\pi r^{3} \qquad \% ionic character = \left(1 - e^{-\frac{(X_{A} - X_{B})^{2}}{4}}\right) x 100\% \\ N_{v} &= Nexp\left(-\frac{Q_{v}}{kr}\right); \qquad N = \frac{N_{A}\rho}{A}; \qquad J = -D\frac{dC}{dx} \qquad \frac{\Delta C}{\Delta x} = \frac{C_{2} - C_{1}}{x_{2} - x_{1}} \\ D &= D_{o}exp\left(-\frac{Q_{d}}{RT}\right); \qquad \frac{\partial C}{\partial t} = D\frac{\partial^{2}C}{\partial x^{2}}; \qquad \frac{C(x,t) - C_{o}}{C_{s} - C_{o}} = 1 - erf\left(\frac{x}{2\sqrt{Dt}}\right) \qquad x \approx \sqrt{Dt} \\ \sigma &= \frac{F}{A_{0}} \qquad \sigma = E\varepsilon \quad \varepsilon = \frac{\delta}{L_{0}} \qquad v = -\frac{\varepsilon_{l}}{\varepsilon} \qquad \varepsilon L = \frac{-\delta}{W_{0}} \qquad U_{r} = \frac{1}{2}\sigma_{y}\varepsilon_{y} \qquad \tau = G\gamma \\ \% EL &= \frac{L_{r} - L_{o}}{L_{o}} \times 100 \qquad \% RA = \frac{A_{o} - A_{r}}{A_{o}} \times 100 \qquad W_{t} = \frac{M_{t}}{M_{t} + M_{a}} = \frac{S}{R + S} = \frac{C_{a} - C_{0}}{C_{a} - C_{t}} \qquad W_{a} = \frac{R}{R + S} - \frac{C_{a} - C_{t}}{C_{a} - C_{t}} \\ \rho &= \frac{(\# of cations/UC)(atomic wt. of cation) + (\# of anions/UC)(atomic wt. of anion)}{V_{c}N_{A}} \\ \Delta V &= V_{2}^{\circ} - V_{1}^{\circ} - \frac{RT}{nF} \ln \frac{[M_{1}^{n+1}]}{[M_{2}^{n+1}]} \qquad \Delta V = V_{2}^{\circ} - V_{1}^{\circ} - \frac{0.0592}{n} \log \frac{[M_{1}^{n+1}]}{[M_{2}^{n+1}]} \\ CPR &= \frac{KW}{\rho At} \qquad J = \sigma E \qquad J = ev_{d}n \qquad v_{d} = \mu_{e}E \qquad \sigma_{undoped} \qquad e^{-\frac{-E_{g}ap}{kT}} \end{aligned}$$

$$\sigma = \mathbf{n}|e|\,\mu_e + p|e|\,\mu_h$$

Useful constants:

Useful constants and tabels:

Print Name (clearly)

1	Platinum Gold Graphite Titanium Silver 316 Stainless steel (passive) 304 Stainless steel (passive) Inconel (80Ni–13Cr–7Fe) (passive) Nickel (passive)
Increasingly inert (cathodic)	Monel (70IN=50CU) Copper–nickel alloys Bronzes (Cu–Sn alloys) Copper Brasses (Cu–Zn alloys) Inconel (active) Nickel (active) Tin Lead
Increasingly active (anodic)	2316 Stainless steel (active) 304 Stainless steel (active) Cast iron Iron and steel Aluminum alloys Cadmium Commercially pure aluminum Zinc Magnesium and magnesium alloys

Table 17.1 The Standard emf Series

	Electrode Reaction	Standard Electrode Potential, V ⁰ (V)
	$Au^{3+} + 3e^- \longrightarrow Au$	+1.420
1	$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	+1.229
	$Pt^{2+} + 2e^- \longrightarrow Pt$	$\sim +1.2$
	$Ag^- + e^- \longrightarrow Ag$	+0.800
Increasingly inert	$Fe^{3+} + e^- \longrightarrow Fe^{2+}$	+0.771
(cathodic)	$O_2 + 2H_2O + 4e^- \longrightarrow 4(OH^-)$	+0.401
	$Cu^{2+} + 2e^- \longrightarrow Cu$	+0.340
	$2H^+ + 2e^- \longrightarrow H_2$	0.000
	$Pb^{2+} + 2e^- \longrightarrow Pb$	-0.126
	$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$	-0.136
	$Ni^{2+} + 2e^{-} \longrightarrow Ni$	-0.250
	$Co^{2+} + 2e^{-} \longrightarrow Co$	-0.277
	$Cd^{2+} + 2e^{-} \longrightarrow Cd$	-0.403
	$Fe^{2+} + 2e^- \longrightarrow Fe$	-0.440
Increasingly active	$Cr^{3+} + 3e^- \longrightarrow Cr$	-0.744
(anodic)	$Zn^{2+} + 2e^- \longrightarrow Zn$	-0.763
	$Al^{3+} + 3e^- \longrightarrow Al$	-1.662
	$Mg^{2+} + 2e^- \longrightarrow Mg$	-2.363
↓	$Na^+ + e^- \longrightarrow Na$	-2.714
	$\mathbf{K}^+ + e^- \longrightarrow \mathbf{K}$	-2.924

Cation	Ionic Radius	Anion	Ionic Radius			
Cullon	(<i>nm</i>)	Anion	(nm)			
Al^{3+}	0.053	Br^{-}	0.196			
Ba^{2+}	0.136	$C1^{-}$	0.181			
Ca^{2+}	0.100	F^{-}	0.133			
Cs^+	0.170	I^-	0.220			
Fe ²⁺	0.077	O^{2-}	0.140			
Fe ³⁺	0.069	S^{2-}	0.184			
K^+	0.138					
Mg^{2+}	0.072					
Mn^{2+}	0.067					
Na^+	0.102					
Ni ²⁺	0.069					
Si ⁴⁺	0.040					
Ti ⁴⁺	0.061					

Table 12.3Ionic Radii for Several Cations and Anions
(for a Coordination Number of 6)

Table 5.1 Tabulation of Error Function Values

z	erf(z)	z	erf(z)	z	erf(z)		
0	0	0.55	0.5633	1.3	0.934		
0.025	0.0282	0.60	0.6039	1.4	0.952		
0.05	0.0564	0.65	0.6420	1.5	0.966		
0.10	0.1125	0.70	0.6778	1.6	0.976		
0.15	0.1680	0.75	0.7112	1.7	0.983		
0.20	0.2227	0.80	0.7421	1.8	0.989		
0.25	0.2763	0.85	0.7707	1.9	0.992		
0.30	0.3286	0.90	0.7970	2.0	0.995		
0.35	0.3794	0.95	0.8209	2.2	0.998		
0.40	0.4284	1.0	0.8427	2.4	0.9993		
0.45	0.4755	1.1	0.8802	2.6	0.9998		
0.50	0.5205	1.2	0.9103	2.8	0.999		

Metal

IA				Key													0
1		29 Atomic number						Nonme	tal							2	
н		Cu < — Symbol														He	
1.0080	IIA			63.55-	Atom	nic weigh	t		1			IIIA	IVA	VA	VIA	VIIA	4.0026
3	4				Aton	ne weign			Interne	diata		5	6	7	8	9	10
Li	Be								merme	eulate		В	С	N	0	F	Ne
6.941	9.0122							f.				10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg	10000042202						VIII				AI	Si	Р	S	CI	Ar
22.990	24.305	IIIB	IVB	VB	VIB	VIIB				IB	IIB	26.982	28.086	30.974	32.064	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.87	50.942	51.996	54.938	55.845	58.933	58.69	63.55	65.41	69.72	72.64	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.4	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.30
55	56	Rare	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	earth	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	series	178.49	180.95	183.84	186.2	190.23	192.2	195.08	196.97	200.59	204.38	207.19	208.98	(209)	(210)	(222)
87	88	Acti-	104	105	106	107	108	109	110								
Fr	Ra	nide	Rf	Db	Sg	Bh	Hs	Mt	Ds								
(223)	(226)	series	(261)	(262)	(266)	(264)	(277)	(268)	(281)								