$E_{N}=E_{A}+E_{R} \quad E_{\text {total }}=-\frac{A}{r}+\frac{B}{r^{n}} \quad A=\frac{z_{1} z_{2} e^{2}}{4 \pi \varepsilon_{o}} \quad E=\int F d r \quad F=\frac{d E}{d r}$
Density $=\frac{\text { mass }}{\text { volume }} ; \quad \rho=\frac{n A}{V_{c} N_{A}} ; \quad A P F=\frac{V_{\text {atoms }}}{V_{\text {unit cell }}} ;$
Volume of a sphere $=\frac{4}{3} \pi r^{3} \quad$ \% ionic character $=\left(1-e^{-\frac{\left(X_{A}-X_{B}\right)^{2}}{4}}\right) \times 100 \%$

$$
\begin{array}{llrl}
N_{v}=N \exp \left(-\frac{Q_{v}}{k T}\right) ; & N=\frac{N_{A} \rho}{A} ; & J=-D \frac{d C}{d x} \quad \frac{\Delta C}{\Delta x}=\frac{C_{2}-C_{1}}{x_{2}-x_{1}} \\
D=D_{o} \exp \left(-\frac{Q_{d}}{R T}\right) ; & \frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}} ; & \frac{C(x, t)-C_{o}}{C_{s}-C_{o}}=1-\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right) & x \approx \sqrt{D t}
\end{array}
$$

$$
\sigma=\frac{F}{A_{0}} \quad \sigma=\mathrm{E} \varepsilon \quad \varepsilon=\frac{\delta}{L_{0}} \quad v=-\frac{\varepsilon_{l}}{\varepsilon} \quad \varepsilon L=\frac{-\delta L}{W_{0}} \quad U_{r} \cong \frac{1}{2} \sigma_{y} \varepsilon_{y} \quad \tau=G \gamma
$$

$\% E L=\frac{L_{f}-L_{0}}{L_{0}} \times 100 \quad \% R A=\frac{A_{o}-A_{f}}{A_{0}} \times 100 \quad W_{L}=\frac{M_{L}}{M_{L}+M_{\alpha}}=\frac{S}{R+S}=\frac{C_{a}-C_{0}}{C_{a}-C_{L}} \quad W_{a}=\frac{R}{R+S}=\frac{C_{0}-C_{L}}{C_{a}-C_{L}}$

$$
D P_{n}=\sum x_{i} n_{i}=\frac{\overline{M_{n}}}{m} \quad D P_{w}=\sum w_{i} n_{i}=\frac{\overline{M_{w}}}{m} \quad m=\Sigma f_{i} m_{i} \quad \rho=\frac{n^{\prime}\left(\Sigma A_{\mathrm{C}}+\Sigma A_{\mathrm{A}}\right)}{V_{C} N_{\mathrm{A}}}
$$

$\rho=\frac{(\# \text { of cations/UC)(atomic wt. of cation) }+ \text { (\# of anions/UC)(atomic wt. of anion) }}{V_{C} N_{A}}$

$$
\begin{gathered}
\Delta \mathrm{V}=\mathrm{V}_{2}^{\circ}-\mathrm{V}_{1}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \frac{\left[\mathrm{M}_{1}^{\mathrm{n}+}\right]}{\left[\mathrm{M}_{2}^{\mathrm{n}+}\right]} \quad \Delta \mathrm{V}=\mathrm{V}_{2}^{\circ}-\mathrm{V}_{1}^{\circ}-\frac{0.0592}{\mathrm{n}} \log \frac{\left[\mathrm{M}_{1}^{\mathrm{n}+}\right]}{\left[\mathrm{M}_{2}^{\mathrm{n}+}\right]} \\
\mathrm{CPR}=\frac{\mathrm{KW}}{\rho \mathrm{At}} \quad J=\sigma \mathrm{E} \quad J=e v_{d} n \quad \mathrm{~V}_{\mathrm{d}}=\mu_{e^{\mathrm{E}}} \quad \sigma_{\mathrm{undoped}} \propto e^{-\frac{-E_{g a p}}{k T}} \\
\sigma=\mathrm{n}|e| \mu_{e}+p|e| \mu_{h}
\end{gathered}
$$

Useful constants:

Avogadro's \#: 6.023×10^{23} atoms $/ \mathrm{mol}$. Electronic charge: $\mathrm{e}=-1.602 \times 10^{-19} \mathrm{C}$
Boltzmann's constant: $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} /$ atom $-\mathrm{K}=8.62 \times 10^{-5} \mathrm{eV} /$ atom -K
Planck's constant: $\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s} \quad$ Bohr Magneton: $\mathrm{m}_{\mathrm{B}}=9.27 \times 10^{-24} \mathrm{~A}-\mathrm{m}^{2}$
Gas Constant: $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}=1.987 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$
Gravitational constant: $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Faraday Constant: F = 96,487 C/mol

Table 17.2 The Galvanic Series

	Platinum
	Gold
	Graphite
	Titanium
	Silver
	[316 Stainless steel (passive)
	304 Stainless steel (passive)
Increasingly inert (cathodic)	$\left[\begin{array}{l}\text { Inconel (} 80 \mathrm{Ni}-13 \mathrm{Cr}-7 \mathrm{Fe} \text {) (passive) } \\ \text { Nickel (passive) }\end{array}\right.$
	[Monel (70Ni-30Cu)
	Copper-nickel alloys
	Bronzes ($\mathrm{Cu}-\mathrm{Sn}$ alloys)
	Copper
	Brasses ($\mathrm{Cu}-\mathrm{Zn}$ alloys)
	[Inconel (active)
	L Nickel (active)
	Tin
	Lead
Increasingly active (anodic)	316 Stainless steel (active)
	304 Stainless steel (active)
	[Cast iron
	Iron and steel
	Aluminum alloys
	Cadmium
	Commercially pure aluminum
	Zinc
	Magnesium and magnesium alloys

Table 17.1 The Standard emf Series

Electrode Reaction	Standard Electrode Potential, $\boldsymbol{V}^{\mathbf{0}} \mathbf{(V)}$	
\uparrow	$\mathrm{Au}^{3+}+3 e^{-} \longrightarrow \mathrm{Au}$	+1.420
	$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 e^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.229
$\mathrm{Pt}^{2+}+2 e^{-} \longrightarrow \mathrm{Pt}$	$\sim+1.2$	
Increasingly inert	$\mathrm{Ag}^{-}+e^{-} \longrightarrow \mathrm{Ag}$	+0.800
(cathodic)	$\mathrm{Fe}^{3+}+e^{-} \longrightarrow \mathrm{Fe}^{2+}$	+0.771
	$\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 e^{-} \longrightarrow 4\left(\mathrm{OH}^{-}\right)$	+0.401
$\mathrm{Cu}^{2+}+2 e^{-} \longrightarrow \mathrm{Cu}$	+0.340	
	$2 \mathrm{H}^{+}+2 e^{-} \longrightarrow \mathrm{H}$	0.000
	$\mathrm{~Pb}^{2+}+2 e^{-} \longrightarrow \mathrm{Pb}$	-0.126
$\mathrm{Sn}^{2+}+2 e^{-} \longrightarrow \mathrm{Pn}$	-0.136	
Increasingly active	$\mathrm{Ni}^{2+}+2 e^{-} \longrightarrow \mathrm{Ni}$	-0.250
$($ anodic)	$\mathrm{Co}^{2+}+2 e^{-} \longrightarrow \mathrm{Co}$	-0.277
	$\mathrm{Cd}^{2+}+2 e^{-} \longrightarrow \mathrm{Cd}$	-0.403
	$\mathrm{Fe}^{2+}+2 e^{-} \longrightarrow \mathrm{Fe}$	-0.440
	$\mathrm{Cr}^{3+}+3 e^{-} \longrightarrow \mathrm{Cr}$	-0.744
	$\mathrm{Zn}^{2+}+2 e^{-} \longrightarrow \mathrm{Zn}$	-0.763
	$\mathrm{Al}^{3+}+3 e^{-} \longrightarrow \mathrm{Al}$	-1.662
	$\mathrm{Mg}^{2+}+2 e^{-} \longrightarrow \mathrm{Mg}$	-2.363
	$\mathrm{Na}^{+}+e^{-} \longrightarrow \mathrm{Na}$	-2.714
	$\mathrm{~K}^{+}+e^{-} \longrightarrow \mathrm{K}$	-2.924

Table 12.3 Ionic Radii for Several Cations and Anions (for a Coordination Number of 6)

Cation	Ionic Radius $(\boldsymbol{n m})$	Anion	Ionic Radius $(\boldsymbol{n m})$
Al^{3+}	0.053	Br^{-}	0.196
Ba^{2+}	0.136	Cl^{-}	0.181
Ca^{2+}	0.100	$\mathrm{~F}^{-}$	0.133
Cs^{+}	0.170	I^{-}	0.220
Fe^{2+}	0.077	O^{2-}	0.140
Fe^{3+}	0.069	$\mathrm{~S}^{2-}$	0.184
$\mathrm{~K}^{+}$	0.138		
Mg^{2+}	0.072		
Mn^{2+}	0.067		
Na^{+}	0.102		
Ni^{2+}	0.069		
Si^{4+}	0.040		
Ti^{4+}	0.061		

Table 5.1 Tabulation of Error Function Values

z	$\operatorname{erf}(z)$	z	$\operatorname{erf}(z)$	z	$\operatorname{erf}(z)$
0	0	0.55	0.5633	1.3	0.9340
0.025	0.0282	0.60	0.6039	1.4	0.9523
0.05	0.0564	0.65	0.6420	1.5	0.9661
0.10	0.1125	0.70	0.6778	1.6	0.9763
0.15	0.1680	0.75	0.7112	1.7	0.9838
0.20	0.2227	0.80	0.7421	1.8	0.9891
0.25	0.2763	0.85	0.7707	1.9	0.9928
0.30	0.3286	0.90	0.7970	2.0	0.9953
0.35	0.3794	0.95	0.8209	2.2	0.9981
0.40	0.4284	1.0	0.8427	2.4	0.9993
0.45	0.4755	1.1	0.8802	2.6	0.9998
0.50	0.5205	1.2	0.9103	2.8	0.9999

